Extensions 1→N→G→Q→1 with N=C22 and Q=C3.S4

Direct product G=N×Q with N=C22 and Q=C3.S4
dρLabelID
C22×C3.S436C2^2xC3.S4288,835

Semidirect products G=N:Q with N=C22 and Q=C3.S4
extensionφ:Q→Aut NdρLabelID
C22⋊(C3.S4) = C24⋊D9φ: C3.S4/C2×C6S3 ⊆ Aut C22366C2^2:(C3.S4)288,836
C222(C3.S4) = C23.D18φ: C3.S4/C3.A4C2 ⊆ Aut C22366C2^2:2(C3.S4)288,342

Non-split extensions G=N.Q with N=C22 and Q=C3.S4
extensionφ:Q→Aut NdρLabelID
C22.(C3.S4) = C42⋊D9φ: C3.S4/C2×C6S3 ⊆ Aut C22366+C2^2.(C3.S4)288,67
C22.2(C3.S4) = Q8.D18φ: C3.S4/C3.A4C2 ⊆ Aut C221444C2^2.2(C3.S4)288,337
C22.3(C3.S4) = Q8⋊Dic9central extension (φ=1)288C2^2.3(C3.S4)288,69
C22.4(C3.S4) = C2×Q8.D9central extension (φ=1)288C2^2.4(C3.S4)288,335
C22.5(C3.S4) = C2×Q8⋊D9central extension (φ=1)144C2^2.5(C3.S4)288,336
C22.6(C3.S4) = C2×C6.S4central extension (φ=1)72C2^2.6(C3.S4)288,341

׿
×
𝔽